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Abstract

We propose and study a simple model of dynamical redistribution of capital in a diversi�ed
portfolio. We consider a hypothetical situation of a portfolio composed of N uncorrelated stocks.
Each stock price follows a multiplicative random walk with identical drift and dispersion. The
rules of our model naturally give rise to power law tails in the distribution of capital fractions
invested in di�erent stocks. The exponent of this scale free distribution is calculated in both
discrete and continuous time formalism. It is demonstrated that the dynamical redistribution
strategy results in a larger typical growth rate of the capital than a static “buy-and-hold” strategy.
In the large N limit the typical growth rate is shown to asymptotically approach that of the
expectation value of the stock price. The �nite dimensional variant of the model is shown to
describe the partition function of directed polymers in random media. c© 1998 Elsevier Science
B.V. All rights reserved

1. Introduction

The problem of �nding an investment strategy with the best long-term growth rate
of the capital is of tremendous practical importance. The traditional theory of portfolio
optimization is stationary in origin [1]. It answers the question of optimal distribution
of the capital between di�erent assets (optimal asset allocation), but in general gives
no prescription on how to maintain this optimal allocation at all times. In this work
we propose a simple model of dynamical allocation of capital. Somewhat counterin-
tuitively, in order to optimize the growth rate of the capital an investor has to sell
assets which have increased in price since the last update, and buy those which have
decreased. In doing so he sells stocks when they are “overpriced” and buys them when
they are “underpriced”, which is clearly advantageous. As we demonstrate below, in
our model an investor who actively manages his portfolio in such a fashion almost
certainly does better than one who follows a static “buy-and-hold” strategy.
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The nontrivial properties of the problem come from the multiplicative nature of
stock price uctuations. Throughout this manuscript we assume that on timescales of
interest to us the prices of individual assets follow a multiplicative random walk. In
other words, the ratio of stock prices at two consecutive times, at which the investor
buys or sells stock, is a random number, uncorrelated with the current price and with
the history of price changes in the past. There are many peculiarities of such noisy
multiplicative dynamics, especially regarding expectation values of random variables.
Traditional expectation (average) value is of little relevance here. The reason for this
is that the dominant contribution to the expectation value of a random variable subject
to multiplicative noise comes from exponentially unlikely outcomes when the variable
is exponentially large. For any �nite number of realizations (and in real world one
always deals with just one realization) this expectation (average) value is very unlikely
to appear. On the other hand, the typical value of such random variable, de�ned as
the median of its probability distribution, constitutes a more realistic property.
Just like in the static portfolio theory, our strategy favors the diversi�cation, i.e.

increasing the number of assets in the portfolio. We demonstrate that in our model the
diversi�cation reduces uctuations, and makes the growth rate of the typical value of
the capital to be closer to that of its expectation value. However, for any �nite number
of assets, these two growth rates are still di�erent.
Under the rules of dynamical redistribution of funds, which we employ in this

manuscript, the distribution of shares of the total capital invested in individual as-
sets naturally acquires a power law tail. This adds yet another example of how a scale
free distribution can arise out of multiplicative dynamics without �ne-tuning of any
sort. We derive the analytical expression for the exponent � of this power law. Some-
what surprisingly, in the weak coupling limit, corresponding to slow redistribution of
funds between the assets, this exponent has a “superuniversal” value �=2. It gradually
increases with the coupling constant and becomes in�nite in the limit where the capital
is equally redistributed between assets after each time step.
The rules of redistribution of capital can be interpreted as fully connected (in�nite-

dimensional) limit of the well known statistical model of directed polymers in the
presence of quenched disorder. This provides a new and exciting link between the
physics of �nance, and the problems lying on the forefront of modern theoretical
condensed matter physics.
The plan of the manuscript is as follows: to streamline the following introduction

of our basic model, in Section 2 we review the well known (and not so well known)
properties of a stochastic multiplicative dynamics. We remind the reader the formulas
for average and typical value of a single multiplicative random walk, formulate the
“continuous” time approach to this problem, and refresh in reader’s memory the for-
malism of Ito stochastic calculus, necessary for our purposes. Then we review recent
results on natural appearance of power law distributions in a situation when a single
multiplicative random walk is pushed against lower wall [2,3], preventing the random
variable from falling below certain value. Finally, we describe the multiplicative stock
price and capital dynamics used throughout this manuscript.
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In Section 3 we analyze the behavior of the typical and average values of the capital
in a “buy-and-hold” strategy, where the capital was initially equally distributed between
N independent assets with the same typical growth rate and dispersion, and no further
redistribution ever took place. We demonstrate that after a logarithmically short initial
period of time, the typical growth rate of the capital is limited to the typical growth rate
of the price of the assets, and is signi�cantly smaller than their average (expectation)
growth rate (or average return per capital of this asset)
In Section 4 we show that the growth rate of investor’s capital can be signi�cantly

increased by following an active, dynamic redistribution strategy. In this strategy at
each time step the investor sells some shares of every stock with current value of
invested capital above the all-stock average, and buys some shares of every stock
below this average. We analyze the consequences of this strategy in both discrete and
continuous time formalisms and demonstrate that in both cases these rules naturally
give rise to a scale free distribution of fractions of individual stock capitals in the
total capital. We proceed with deriving analytical expressions for the exponent of this
distribution, and the typical growth rate of the capital in this situation. This rate for
our strategy proves to be larger than that in the static “buy-and-hold” strategy, which
a posteriori justi�es our approach. However, as should be expected, the total capital
is still subject to the multiplicative noise, and therefore its typical growth rate is still
smaller than the average growth rate. We demonstrate that in the limit N→∞ these
two rates asymptotically converge as some power of 1=N .

2. Review of results for a single multiplicative random walk

2.1. Typical and average values of a multiplicative random walk

Consider a stochastic process in which at each time step a variable W (t) is multi-
plied by a positive random number e�(t), where �(t) is drawn from some probability
distribution �(�):

W (t + 1)= e�(t)W (t) : (1)

We adopt the initial condition W (0)= 1. For the new variable h(t)= lnW (t) this pro-
cess is just a random walk with an average drift v= 〈�〉 and a dispersion D= 〈�2〉−
〈�〉2. The corresponding equation of motion is simply

h(t + 1)= h(t) + �(t) : (2)

In recent literature it has been observed that average and typical values of W (t)
in such a process can be very di�erent. One of the precise de�nitions of the typical
value of a random variable is the median [4] of its probability distribution, i.e. for
Wtyp one has the property that Prob(W¿Wtyp)=Prob(W¡Wtyp)= 1=2. By de�nition
Wtyp(t)= ehtyp(t).
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The central limit theorem implies that asymptotically the distribution P(h; t) can be
approximated with a Gaussian

P(h; t)=
1√
2�Dt

exp
(
− (h− vt)

2

2Dt

)
: (3)

Therefore, the median (as well as average and most probable values) of h(t) changes
linearly with time, and the rate of this change is given by the drift velocity v= 〈�〉 of
the corresponding random walk: lnWtyp(t)= 〈lnW (t)〉 = 〈�〉 t.
On the other hand the expectation (average) value of W (t) changes as 〈W (t + 1)〉 =

〈e�〉 〈W (t)〉 (since �(t) and W (t) are uncorrelated). Hence, ln 〈W (t)〉 = ln 〈e�〉 t also
depends linearly on time but with a di�erent slope. It is easy to show that for any
distribution ln 〈e�〉¿ 〈�〉, so that the average value of W always grows faster than its
typical value and after some time one has 〈W (t)〉/Wtyp(t). This exponentially large
discrepancy between typical and average values of W is due to the long tails of P(W; t),
but the events constituting these tails are extremely rare.
For future use we derive analytic expressions for the growth rate of 〈Wm(t)〉 in a

simple case, when � is drawn from a Gaussian distribution with average value v= 〈�〉
and dispersion D=

〈
�2
〉 − 〈�〉2. Since the dynamics of Wm is given by Wm(t + 1)=

e�(t)mWm(t), for 〈Wm(t)〉 one has 〈Wm(t)〉=〈e�m〉t . The integral ∫∞
−∞d�e

�me−(�−v)
2=2D=√

2�D can be easily taken and is equal to em(v+Dm=2). Therefore, for a Gaussian dis-
tribution one has

〈e�m〉1=m = e v+Dm=2 ; (4)

〈Wm(t)〉 = em(v+Dm=2)t : (5)

It is important to mention that, although by the virtue of the Central Limit Theorem,
for any �(�) with a given average v and dispersion D the distribution P(h; t) can be
approximated by a Gaussian (3), the precision of this approximation is not su�cient to
calculate averages of the type 〈Wm(t)〉 = ∫ emh(t)P(h; t)dh. This integral is too sensitive
to the precise shape of the distribution at the upper tail (or lower tail for m¡0). Indeed,
the growth rate of ln 〈Wm(t)〉 equal to ln ∫∞

−∞ d� �(�) e
�m, depends on the whole shape

of �(�) and not only on its �rst and second moments v and D.

2.2. Multiplicative random walk in the continuous time approach

The above multiplicative process is de�ned without ambiguity for discrete time.
Straightforwardly taking the continuum limit causes problems. It might be useful to
rewrite the equation of motion of a multiplicative random walk as a Stochastic Dif-
ferential Equation (SDE) in continuous time. One should always keep in mind that a
stochastic di�erential equation is nothing more than a convenient notation to describe
a stochastic process in discrete time. At the nth time step of discretized dynamics we
de�ne a new “continuous” time variable t as t= n�t. Here we introduced a rescaling
factor �t. 1, which makes one step of underlying discrete dynamics an
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“in�nitesimally small” increment of the continuous time t. In the SDE approach one is
limited to Gaussian distributed random variables, so we select a Gaussian distribution
of �(t) in our discrete dynamics. Since we want to approximate W (t) with a continuous
function, the di�erence W (t +�t)−W (t) after one step of discrete dynamics should
be “in�nitesimally” small. Therefore, we should select both the average value and the
dispersion of the Gaussian variable �(t) to scale as some power of �t. It turns out
to be the right choice to make them both scale linearly with �t: �(t)= v�t + ��(t),
where

〈
��(t)2

〉
=D�t. Now one can write the discrete equation of motion for W (t)

as W (t +�t)= e v�t+��(t) W (t)' [1 + v�t + ��(t) + (v�t + ��(t))2=2]W (t)'W (t) +
((v + D=2)�t + ��(t))W (t), where we have dropped all terms smaller than linear in
�t. 1. The SDE for W (t) can now be written as

dW (t)
dt

=
(
v+

D
2

)
W (t) + �̃(t)W (t) : (6)

Here �̃(t)= ��(t)=�t is a usual gaussian “continuous noise” with zero mean and cor-
relations given by 〈�̃(t)�̃(t′)〉=D�(t− t′). We also assume the absence of correlations
between W (t) and �̃(t). This assumption corresponds to selecting the Ito calculus over
Stratonovich calculus. Both are just two formal ways of linking the polemic continuum
limit and the well de�ned discrete version.
The nontrivial part of this equation is an extra D=2 term added to a deterministic

growth rate of W (t). This term is not an artifact of our approach, but has a real physical
meaning. Indeed, Eq. (6) can be solved for 〈W (t)〉 to give 〈W (t)〉= 〈W (0)〉 e (v+D=2)t ,
which is the right answer (see Eq. (5)). Without this extra term we would be lead
to the conclusion that for v=0, i.e. 〈�〉=0, the average (not typical!) W (t) does not
grow, which is wrong.
The other way to get this extra term in the equation for W is to start with the well

known Langevin equation of motion for h(t)= lnW (t) describing a usual random walk
with a drift:

dh(t)
dt

= v+ �̃(t) ; (7)

where again 〈�̃(t)〉=0, and 〈�̃(t)�̃(t′)〉=D�(t − t′). To derive the equation of motion
for W (t)= eh(t) one has to do the change of variables as for usual partial di�eren-
tial equations. But in addition to this one has to add the “Ito term” [5] given by
(D=2)(@2W=@h2), which is a formal prescription of Ito calculus. With this nontrivial
correction one recovers the equation of motion (6). So in the language of SDE the
di�erence between the typical (v) and the average (v+ D=2) growth rates of W (t) in
the multiplicative random walk is a direct consequence of the Ito term, appearing after
the change of variables from h to W in Eq. (7).

2.3. Multiplicative random walk in the presence of a lower wall

Much attention was devoted recently [2,3] to the analysis of the problem of “mul-
tiplicative random walk, repelled from zero”. In the context of economics it was �rst
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introduced by Solomon et al. [2]. In a simplest case one has a multiplicative random
walk with a Gaussian random variable �, having a negative average v= 〈�〉¡0, and
the dispersion D. In other words the typical value of W (t) exponentially decreasing
in time, while its average may or may not grow in time depending on the sign of
v+D=2. In addition to this one has an “external force”, pushing W (t) up and prevent-
ing it from falling below some predetermined constant. This external inuence, which
will be referred to as “lower wall”, should not signi�cantly a�ect the dynamics for
large W . One way to introduce a lower wall is to add an additional positive “source”
term b into the RHS of Eq. (6). Eqs. (6) and (7) now become

dW (t)
dt

=(v+ D=2)W (t) + �(t)W (t) + b ; (8)

dh(t)
dt

= v+ �(t) + b exp(−h) : (9)

As we see the lower wall in Eq. (9) has a property of being “short-ranged” in
h-space, i.e. its contribution to the SDE for h(t) can be neglected for large positive h.
But for negative h the strength of the wall grows exponentially and compensates the
negative drift already at h=−ln(|v|=b). It is easy to convince oneself that this stochastic
process eventually reaches a stationary state, characterized by a stationary probability
distribution P(h). In this stationary state the negative drift of h(t) is precisely balanced
with di�usion combined with repulsion from the lower wall.
In the literature on this subject one encounters many di�erent realizations of the

lower wall mechanism. For instance, one can introduce a more general term bW� into
the RHS of Eq. (6) [6,7]. In the equation for h this term becomes be (�−1)h, which for
any �¡1 describes an exponential lower wall qualitatively similar to Eq. (9). Indeed,
the “source” term in Eq. (8) is just a particular example of this more general term
with �=0. On the other hand, the terms with b¡0 and �¿1 describe an “upper wall”,
preventing h from becoming to big. In this case, in order for a stationary state to exist
one needs a positive drift of h pushing it up against the wall. In [2] the lower wall is
introduced “by hand”: in their simulations the authors simply do not allow h(t) to fall
below a predetermined constant hmin. In other words, h(t + 1)=min(h(t) + �(t); hmin).
Such “in�nitely hard lower wall” can be described by a term bW� with very large
negative �. Finally, Sornette and Cont [3] consider a case when the constant b itself
can depend on time obeying a deterministic and=or stochastic dynamics. Except for
pathological cases, where typical b(t) exponentially grows or decays in time, it does
not qualitatively change the results, compared to a time-independent lower wall [2].
An interesting feature of a multiplicative random walk with a lower wall is that

it generically gives rise to a power law tail in the distribution of W in the station-
ary state. We proceed by reviewing various derivations of this result found in recent
literature [2,3]. As was explained above, the lower wall’s only purpose is to make the
process stationary by pushing the variable up whenever it becomes too small. The drift
due to the wall can always be neglected for large enough h. In the region, where this
approximation is justi�ed one can write a Fokker–Planck equation, taking into account
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only the multiplicative part of the process, equivalent to di�usion with a drift in the
h-space. The stationary solution of the Fokker–Planck equation should satisfy

−v@P(h)
@h

+
D
2
@2P(h)
@h2

= 0 :

It is easy to see that P(h)=A exp(2vh=D) is indeed a solution. Since v¡0, it expo-
nentially decays for positive h. The deviations from this form start to appear only at
low h, where the presence of lower wall cannot be neglected. This “Boltzmann” tail
of the distribution of h corresponds to a power law tail of distribution of W = eh:
P(W )=AW−1+2v=D. The exponent of this power law tail

�=1− 2v=D=1 + 2|v|=D (10)

is greater than 1, so that there are no problems with normalization. In case of a
lower wall of the form be−h (see Eq. (9)) one can write an analytic solution of the
Fokker–Planck equation valid for any h. It is the Boltzmann distribution with a Hamil-
tonian H (h)= be−h − vh and temperature T =D=2, i.e. P(h)=A exp[(−2be−h=D +
2vh=D)], or P(W )=A exp(−2b=DW )W−1+2v=D. The normalization constant A is given
by A=(2b=D)−2v=D=�(−2v=D).
Eq. (10), expressing the exponent of the power law tail of P(W ) in terms of v

and D, is valid only for the case of Gaussian distribution �(�). Indeed, in its deriva-
tion we employed a stochastic di�erential equation approach, which is restricted to
Gaussian noise. It is instructive to derive an equation, giving the value of � for a
general �(�). It was �rst done by Kesten in [8] and recently brought to the at-
tention of physics community in [3]. Again, the formula holds for any multiplica-
tive process with a negative average drift (〈�〉¡0) and a lower wall, the e�ect of
which can be neglected for large W . We assume that the process has already reached
a stationary state, characterized by a stationary distribution P(W ). For su�ciently
large W , so that one can neglect the e�ect of the wall, the stationarity imposes
the following functional equation on P(W ): P(W )=

∫ +∞
−∞ �(�)d�

∫ +∞
0 P(W ′)�(W −

e�W ′)dW ′=
∫ +∞
−∞ d� �(�)e−�P(We−�). Assuming that the solution has a power law

tail P(W )∼W−� one �nds
∫ +∞
−∞ d� �(�)e�(�−1) = 1. In other words � is given by a

solution of〈
e�(�−1)

〉
=1 : (11)

The obvious solution �=1 should be rejected because the distribution function is not
normalizable in this case. In short, we are looking for a solution with �¿1. Let us
de�ne �(�)=

〈
e�(�−1)

〉
. Since d�(1)=d�= 〈�〉¡0, but d2�(�)=d�2¿0 one has at most

one such a solution. In fact, if the distribution of p(�) is not restricted to �¡0, for
�→ +∞ one has �(�)→ +∞ and the solution is guaranteed by the continuity of �(t).
Only in the situation when � is always negative, the region of large W is absolutely
inaccessible, and no power law tail at large W is feasible. Using Eq. (4), one can
check that for a Gaussian distribution Eq. (11) predicts �=1−2v=D in agreement with
Eq. (10).
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2.4. Interpretation of W (t) as a uctuating stock capital

In what follows we will stick to the following “realization” of the random multi-
plicative process: we interpret W (t) as the capital (or wealth, hence the notation) that
a single investor has in some stock. The price of the share of this stock p(t) undergoes
a random multiplicative process p(t + 1)= e�(t)p(t), and if the investor keeps a �xed
number K of shares without selling or buying this stock, his capital W (t)=Kp(t)
follows these price uctuations. Later on we will consider models, where the investor
at each time step will sell some stock and buy another. We assume that volumes of
such transactions are su�ciently small, so that they have no inuence on the market
price uctuations. Hence our assumption that �(t) and W (t) are uncorrelated.
The lesson one derives from the above properties of multiplicative random walk

is that if the investor keeps all his money in just one stock it is the typical growth
rate 〈�〉, he should be concerned about. In majority of realizations his capital grows
at typical rate and he cannot directly take advantage of a bigger average growth rate
ln 〈e�〉. There are situations when the typical growth rate is negative, i.e. the stock
price is going down, while the uctuations are strong enough to make the average
rate positive. The question we are going to address in this manuscript is how one can
still exploit this average growth rate by investing and actively managing a portfolio
composed of N stocks.

3. Ensemble of N stocks without redistribution

The �rst problem we are going to consider is: what is the typical growth rate of
the capital invested in an ensemble of N stocks if one is not allowed to sell one
of them and reinvest the money into another. In the following we assume that the
price pi(t) of a share of each stock undergoes a multiplicative random walk, indepen-
dent of price uctuations of other stocks. In other words, one time step logarithmic
price increments �i(t) are uncorrelated not only at di�erent times, but also for dif-
ferent stocks at a given time. The validity of this approach for the real stock market
lies beyond the scope of this work. For simplicity of �nal expression in this sec-
tion we will restrict ourselves to the situation when �i for each of the stocks are
Gaussian variables with zero mean (〈�i〉 = v=0) and the same dispersion D= 〈�i〉.
Initially the capital is equally distributed between all stocks. We assume that the
starting capital in each stock is equal to 1=N , so that the total capital is equal to
1. The typical value of the total capital (Wtot(t))typ=(

∑N
i=1Wi(t))typ will then grow

in time. From the results of the previous section one concludes that 〈Wi(t)〉 = eDt=2
and

〈
Wi(t)2

〉 − 〈Wi(t)〉2 = e 2Dt − eDt . One can safely replace the sum of N variables
with their average as long as ((

〈
Wi(t)2

〉−〈Wi(t)〉2)=N )1=2. 〈Wi(t)〉. Therefore, at short
times, when Dt. lnN , one indeed enjoys the average growth rate: (Wtot(t))typ= eDt=2.
At later times, however, the typical value of the capital starts to fall below the average
value (i.e. average value over in�nitely many realizations). To determine this slower
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growth of typical value quantitatively one has to approach the problem from a di�erent
end. At late times the value of the total capital is mainly determined by the capital
accumulated in the most successful stock, i.e. Wtot(t)'Wmax≡ maxi=1; N Wi(t). The ex-
tremal statistics theory [9] readily gives the typical value of the Wmax by requiring that
1=N =Prob(W¿Wmax)=Prob(lnW¿lnWmax)∼ exp(−ln 2Wmax=2Dt). With exponen-
tial precision one gets Wmax∼ e

√
2Dt ln N . Our approximation that Wtot(t)'=maxi=1; N

Wi(t) is good only if the second maximal W (we denote it as W (2)
max(t)) is much smaller

than the maximal one. Following the same arguments as before one concludes to �nd
the typical value of W (2)

max(t) one needs to solve Prob(W¿W
(2)
max)= 2=N . This results

in W (2)
max∼ e

√
2Dt (ln N−2). One easily con�rms that the approximation of the whole sum

with its biggest element makes sense if Dt/ lnN , which is a complementary condition
to the “average” growth at small times. Therefore, we conclude that

(Wtot(t))typ= eDt=2 for t. lnN=D ; (12)

(Wtot(t))typ= e
√
2Dt ln N for t/ lnN=D : (13)

Since growth proportional to
√
t is slower than linear in t one concludes that no matter

how big is your N your asymptotic growth of your total capital is still determined by
the “typical” growth rate v= 〈�〉 (equal to zero in the case considered above) of a
single stock.
If one wants to exploit the “average” growth rate for a period of time T and then

sell the stocks one needs to take an exponentially large ensemble of stocks N¿eDT .

4. Ensemble of N stocks with redistribution

The case of “non-interacting” stocks, considered in the previous section, can be also
called the case of a “lazy investor”. Indeed, initially the investor puts equal capital in
N stocks and leaves them as they are. He never sells or buys stocks. No wonder that
very soon he can no longer expect to get an average rate of return on his investment
and has to settle for smaller typical growth rate. Now we are going to consider the case
of an active investor who after each time step redistributes his capital between stocks
according to some simple rule. One may naively think that by selling unsuccessful
stocks with small Wi and reinvesting the money into successful stocks with large Wi
one may do better. In reality the answer is precisely the opposite: one needs to sell
some of the most successful stocks and reinvest the money into the least successful
stocks. Selling only small number of shares of the most successful stocks (i.e. ones
which are currently overpriced) and reinvesting this money into the least successful
stocks (i.e. ones which are currently underpriced) makes a huge di�erence: lnWi for
underpriced stocks goes up signi�cantly, while lnWi for overpriced stocks does not go
down as much. As we will show such a “charity” between stocks bootstraps the typical
growth rate of the capital, so that ln(Wtot(t))typ at all times has a growth rate bigger
than a typical growth rate of a single stock. For large N this rate quickly approaches
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the average growth rate given by ln 〈e�〉 (equal to D=2 for the Gaussian distribution of
� with zero mean). This growth rate serves as a theoretical maximum of all possible
growth rates achievable by simple redistribution of funds.

4.1. Problem with redistribution in the discrete time approach

We start with the simplest strategy for redistribution of the capital. Under this strat-
egy at each time step the investor calculates the current value of average capital per
one stock W (t)= (1=N )

∑
i=1; N Wi(t). The capital is redistributed between the stocks

according to the rule Wi → Wi − �(Wi −W ). For positive � it means that “overpriced”
stocks with Wi(t)¿W (t) loose a fraction of their capital in favor of the “underpriced”
ones with Wi(t)¡W (t). The extremal case of �=1 corresponds to the equal redistri-
bution of the capital after each time step. The stock price changes during the next
discrete time interval. As a result the capital invested in each stock is multiplied by
the random factor e�i(t). The complete change of each stock’s capital after one time
step is given by

Wi(t + 1)= e�i(t)[(1− �)Wi(t) + �W (t)] : (14)

One can recognize the above model can be interpreted as the Directed Polymer
model in N dimensions, with mean �eld (fully connected) interactions [10]. The role
Laplacian is played by W (t)−Wi(t)= (1=N

∑
j=1; N Wj(t))−Wi(t). It is convenient to

introduce a new set of rescaled variables si(t)=Wi(t)=W (t). The sum of si is always
equal to N , which sets a theoretical cuto� equal to N to a value of individual si. One
can rewrite Eqs. (14) in the following form:

si(t + 1)=
W (t)

W (t + 1)
e�i(t)[(1− �)si(t) + �] ; (15)

W (t + 1)=W (t)

∑
i=1; N e

�i(t)[(1− �)si + �]
N

: (16)

As we will con�rm later, the dynamics of W (t) can be approximated as a random
multiplicative process, where the multiplication factor �(t)=

∑
i=1; N e

�i(t)((1− �)si +
�)=N has only small uctuations around its average value. We will indeed demonstrate
that �(t)= 〈�〉 + ��(t), where |��(t)| ∼ N−�=2. It means that for large N to a good
approximation one can disregard the uctuations of W (t + 1)=W (t) while trying to
solve Eq. (15). The average value of this ratio is easily calculated and is equal to 〈e�〉
(one has to recall that

∑
i=1; N si=N ). In this approximation the equations of motion

for si decouple and allow for exact solution. These mean-�eld equations are:

si(t + 1)=
e�i(t)

〈e�〉 [(1− �)si(t) + �] : (17)

Similar equation of motions were recently studied by Cont and Sornette [3] and
Solomon and Levy [2] and were shown to give rise to a stationary distribution of
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s having a power law tail for large s. One has to keep in mind that the de�nition of s
in our problem introduces a natural cut o� to this tail as s6N , so it is only for large
N that one has a chance to see the e�ect of this power law or measure this power law
numerically.
The stationary distribution P(s) is conserved by dynamics. Therefore, it should satisfy

the following functional equation:

P(s)=
∫
d� �(�)P

(
s

R(�)
− �
1− �

)/
R(�) ; (18)

where R(�)= (1 − �)e�= 〈e�〉. Using this equation one can easily verify that indeed
〈s〉 = ∫ sP(s)ds=1, which is to be expected since ∑i=1; N si=N . Assuming that P(s)
has a power law tail of the form As−�, and substituting it to the functional equation (18)
one gets the self consistency condition for the exponent �:

∫
d� �(�)R(�)�−1 = 1, or〈

e�(�−1)
〉1=(�−1)

〈e�〉 =
1

1− � : (19)

For a general distribution �(�) this equation cannot be solved analytically. All one can
deduce is that for a weak coupling �.1 the solution exists and is approximately given
by �=2. That means that for a weak coupling one always has P(s)∼ 1=s2! For a case
of Gaussian distribution of � the analytic expression for � can be easily obtained from
Eq. (4) and is given by

�=2− 2 ln(1− �)
D

: (20)

In Fig. 1 we present the results of simulations of the model with N =10000. The
measured power law exponent is in excellent agreement with the above theoretical
prediction.
Our ultimate goal is to determine W (t)typ as a function of t. The Eq. (16) states

that at each time step W (t) is multiplied by �(t)=
∑

i=1; N e
�i(t)((1−�)si+�)=N . One

can show that �(t) at di�erent time steps are uncorrelated. One can also disregard
possible correlations between the value of W (t) and �(t) at the same time step. Then
the behavior of W (t) is nothing else but a multiplicative random walk studied in
Section 1. The typical value of W (t) grows as (W (t))typ= e t〈ln �〉, while its average
value grows as e t ln〈�〉= e t ln〈e

�〉= 〈e eta〉t .
We will proceed by demonstrating that for any �¿0 the typical and average growth

rates of W (t) di�er by O(N−�). For 〈ln�〉 one has the exact expression:

〈ln�〉 = ln 〈e�〉
〈
ln

(
1 +

1
N

N∑
i=1

�i[(1− �)si + �]
)〉

(21)

where we introduced the notation �i= e�i = 〈e�〉 − 1. Expanding the second logarithm
for large N , we get to leading order:

〈ln�〉 ' ln 〈e�〉 − 1
2N 2

N∑
i=1

〈
�2i
〉 〈
[(1− �)si + �]2

〉
;
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Fig. 1. The distribution of capital fractions si =Wi=W for �=0:25; 0:5, and gaussian �(�) with D=2, and
v=0 in a system of size N =10 000. The solid lines are the theoretical predictions (20) for a power law
exponent � of the tail of this distribution.

where we used the fact that �i(t) are uncorrelated at di�erent i’s. Therefore, 〈�i(t)�j(t′)〉
= D̃�i; j�t; t′ , where D̃=

〈
e 2�
〉
= 〈e�〉2− 1. The fact that these variables are uncorrelated

at di�erent times proves that indeed W (t) undergoes a multiplicative random walk.
The last step is to estimate

∑
i=1; N s

2
i . To do this we need to recall our results for

the stationary distribution P(s). If the exponent � of the power law tail of this dis-
tribution is larger than 3,

〈
s2
〉
is �nite,

∑
i=1; N s

2
i =N 〈s2〉 and one immediately gets

〈ln�〉 = ln 〈�〉−A=N , where A= [(1−�)2 〈s2〉+�2 +2(1−�)]D̃. In reality this is not
hundred percent true. Indeed, expanding the logarithm in Eq. (21) we stopped at the
�rst order. In the presence of power law tails in P(s) the validity of this approximation
is in doubt because the higher-order terms involve the sum of powers ski with k¿2.
For large enough k such powers are known to diverge as some power of N . It can
be shown that for very large N they would dominate the scaling with respect to N .
Such crossover was indeed observed in simulations. In Fig. 2 we present the results
of the simulations of our model with �=0:1, D=0:1, which corresponds to �=4:1.
Indeed, we observe that for N → ∞, the di�erence between the average and typical
growth rates of the total capital, vavg− vtyp(N )= ln 〈�〉− 〈ln�〉, approaches zero. This
approach starts as A=N� with �=1, but at larger N a deviation towards smaller � can
be noticed.
For 2¡�¡3 the second moment of s diverges. This means that one should be more

careful in estimating
∑

i=1; N s
2
i . The apparent divergence of the integral

∫
s2P(s)ds

should not be taken too seriously, since we are dealing with a �nite sample of variables
s restricted by

∑
si=N . Even in the worst case if only one si is nonzero (and equal
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Fig. 2. The di�erence between the average growth rate of the capital vavg =D=2 and its typical growth rate
vtyp(N ) as a function of the number of assets N . The parameters of the model are �=0:1, D=0:1, v=0.
The solid line indicates the theoretical prediction A=N . The crossover towards smaller � is clearly seen for
large N .

to N by normalization) the sum
∑

i=1; N s
2
i = N 2. In all situations when the integral∫

skP(s)ds diverges the sum of a �nite sample is dominated by the largest element.
One can estimate this largest s by requiring Prob(s¿smax)= s1−�max = 1=N . Therefore,
the typical value of the largest si is given by smax ∼ N 1=(�−1). Since �¿2 this value
is always less then N – the maximal possible s. Then

∑
i=1; N s

2
i ' s2max ∼ N 2=(�−1).

Now the expression for the 〈ln�〉 becomes 〈ln�〉 = ln 〈�〉 − A′=N−2+2=(�−1), with
A′ ∼ (1− �)2D̃.

4.2. Problem with redistribution in continuous time approach

Similar results can be obtained in the continuous time limit of Eq. (14). In order to
derive the stochastic partial di�erential equation corresponding to Eq. (14) we assume
that time is discretized t= n�t in units �t and we take �= �c�t, v= vc�t, and
D=Dc�t. In all our future formulas we drop the subscript c in �c, vc, and Dc of the
continuous model. However, one should keep in mind that we recover the continuous
limit by making parameters �; v, and D of a discrete model very small, keeping their
ratio �xed.
In the limit �t.1 the Eq. (14) becomes a stochastic di�erential equation

@tWi(t)= �(W −Wi) + (v+ D=2) Wi +Wi�̃i(t) : (22)
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Here as in Section 1 we introduced the continuous-time stochastic force �̃i(t)= �i(t)=
�t− v, and used e�i =1+ �i + �2i =2+ · · · ' 1+ �̃i�t+ (v+D=2)�t+O(�t3=2). It is
important to point out here that such a continuous time formulation is only meaningful
if �i(t) is a Gaussian noise. Only in this case Eq. (22) can be regarded as a Langevin
equation [5]. Usually the assumption of a Gaussian noise is motivated by the fact
that for a continuous time process, the stochastic force �̃i dt acting on a small interval
�t can be thought of a sum of in�nitely many in�nitesimal contributions. The central
limit theorem then ensures that �̃i�t is Gaussian. For processes with additive noise, this
assumption is reasonable also for discrete time processes. For multiplicative processes
the deviations from the central limit theorem becomes of concern since the tails of
the distributions are probed by the process. Therefore, we shall assume in this section
that �̃i is Gaussian.
Under this assumption, we shall be able to derive the full probability distribution of

the Wi in the limit N→∞. It is again convenient to use the variables si(t)=Wi(t)=W (t).
Using Ito calculus, one readily �nds

@tsi= �(1− si)− D
N
si(si − s2) + si�̃i − s�̃ si (23)

where we used the notation f=(1=N )
∑

j fj. Note that
∑

i si=N and, consistently,∑
i @tsi=0. We shall adopt a self consistent mean �eld approach, valid in the N → ∞

limit, in which we substitute averages over i with statistical averages: f∼= 〈f〉. Within
this approximation, the term s�̃∼= 〈s�̃〉 =0 can be neglected. If we introduce

�=
2�
D

− 2
N

〈
s2
〉 ∼= 2�

D
− 2
N
s2 (24)

as a constant to be determined later self-consistently, Eq. (23) becomes an equation
for si only, which does not involve sj for j 6= i explicitly. We know [5] that, for a
Langevin equation of the form

@ts=−s2dV (s)
ds

+ s�̃ ;

the associated Fokker–Planck equation yields the asymptotic distribution P(s)∼
e−2V (s)=D. Recasting Eq. (23) into this form, we �nd

V (s)=
�
s
+
�D ln s
2

+
Ds
N
;

from which

P(s)=N exp
[
− 2�
Ds

− 2
N
s
]
s−� : (25)

Note the emergence of a power law behavior in P(s), which is however cut o� by
the second term in the exponential. This is physically meaningful, since s6N must
hold, with s=N occurring when the whole capital NW is invested in a single stock.
The value � of the power law decay is determined self-consistently from Eq. (24)
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performing the average on the distribution in Eq. (25). A further requirement which
our approach imposes on P(s) is that s∼= 〈s〉 =1. It is not possible to compute exactly
these averages, however, it is possible to perform a large N expansion. Indeed if we
set

Z(�)=

∞∫
0

ds exp
[
− 2�
Ds

− �s
]
s−�

then, clearly, 〈s〉 =−@� ln Z(�)|�=2=N and
〈
s2
〉
= @2� ln Z(�)|�=2=N + 〈s〉2. Therefore,

evaluating the small � expansion of Z(�) we can compute the �rst two moments
of s and impose self-consistency. However Z(�) has a non–analytic expansion around
�=0, since derivatives @n�Z(�) diverge at �=0 for n¿�. For �¿D=2, the �rst two
derivatives exist. The equation 〈s〉 =1 then allows us to compute � together with its
leading correction:

�∼=2 + 2�
D

− �((D=2)2 − �D=2 + �2)
(D=2)2(D=2− �)

4
N

for D=2¡� : (26)

Eq. (24) then turns out to be automatically satis�ed, which is a reassuring check of
self-consistency. Note that Eq. (20) derived previously, exactly reduces to Eq. (26)
with �.1. For �¡3 the second derivative of Z(�) does not exist at �=0. The second
term in Eq. (26) changes, but the leading term remains the same:

�∼=2 + 2�
D

− 2�=D + 1
�(2�=D + 1)

∞∫
0

dx
e−x − 1 + x
x2+2�=D

[
4�
DN

]2�=D
:

The average growth rate of the capital NW is obtained summing Eq. (22) over i
and dividing by N :

@tW (t)= (v+ D=2 + s�̃)W :

The solution to this equation

W (t) =W (0) exp


(v+ D=2)t +

t∫
0

s�̃(t′)dt′




∼=W (0)e (v+D=2)t

implies that the growth rate of the average is, to leading order in N , equal to the
growth rate of the average v+ D=2.

4.3. Parallels to directed polymers in random media

In conclusion we would like to point out that the stochastic di�erential equation
(22) has a �nite-dimensional analogue, which was much studied over the past decade.
Indeed, the term �(W −Wi) is nothing else but a fully connected (in�nite dimensional)
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variant of discrete Laplacian. In �nite dimensions this term becomes ��Wi= �(
∑

nn
Wnn=2d−Wi). In the spatial continuous limit the Eq. (22) becomes

@tW (x; t)= ��W (x; t) + (v+ D=2)W (x; t) + �(x; t)W (x; t) ; (27)

which can be easily recognized as the equation for the partition function of directed
polymer in random media [10]. The change of variables h= lnW maps this equation
to the so-called KPZ equation [11]:

@th(x; t)= �(�h(x; t) + |∇h(x; t)|2) + vh(x; t) + �(x; t) : (28)

In our in�nite-dimensional (fully connected) model we found that P(W ) has a power
law behavior for large W . In �nite dimensions, at least below the upper critical di-
mension dc (whose very existence is still under debate), this seems not to be the case.
Indeed numerical simulations show that, at least up to d=3 + 1 [12] the distribution
of h= lnW has not a pure exponential, but rather stretched exponential behavior. We
conjecture that the power law behavior of P(W ) in the model studied in this manuscript
is an artifact of the peculiar long range interaction, where each site is coupled to any
other site.
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